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Assume that G is a nonempty open subset of the complex plane and that T is an
operator on the linear space of holomorphic functions in G, endowed with the com-
pact-open topology. In this paper we introduce the notions of strongly omnipresent
operator and of T-monster, which are related to the wild behaviour of certain
holomorphic functions near the boundary of G. T-monsters extend a concept intro-
duced by W. Luh and K.-G. Grosse-Erdmann. After showing that T is strongly
omnipresent if and only if the set of T-monsters is residual, it is proved in this paper
that certain kinds of infinite order differential and antidifferential operators are
strongly omnipresent, which improves some earlier nice results due to the men-
tioned authors. � 2000 Academic Press

Key Words: holomorphic monster; T-monster; strongly omnipresent operator;
infinite order differential operator; infinite order antidifferential operator; entire
function of subexponential type; affine linear mappings; Laplace transform.

1. INTRODUCTION AND NOTATION

Throughout this paper G will stand for a nonempty open set in the com-
plex plane C. N is the set of positive integers, N0=N _ [0], Z is the set
of all integers, C� is the extended complex plane C _ [�], �G is the
(finite) boundary of G, B(a, r) (B� (a, r)) is the euclidean open (closed,
respectively) disk with center a and radius r (a # C, r>0), and D=B(0, 1).
If A/C then A0 is the interior of A and we denote LT(A)=[affine linear
transformations {(z)=az+b such that {(D)/A].

H(G) denotes, as usual, the linear space of holomorphic functions on G,
endowed with the topology {uc of uniform convergence on each compact
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subset in G. Let K(G) be the family of compact subsets of G. It is known
that the family

[D( f, K, =) : f # H(G), K # K(G), =>0],

where

D( f, K, =)=[g # H(G) : | g(z)& f (z)|<= for all z # K]

is a basis for {uc .
If K is a compact set of C, then A(K) will stand for the linear space

C(K) & H(K0), which becomes a Banach space if it is endowed with the
maximum norm.

A topological space X is a Baire space if and only if the intersection of
a countable family of open dense subsets is also dense. Baire's theorem
asserts that each completely metrizable topological space is a Baire space.
Consequently, H(G) is a Baire space. In a Baire space X, a subset is
residual when it contains a dense G$ -subset of X; such a subset is ``very
large'' in X. These notions and results can be found, for instance, in [13,
pp. 213�214; and 21, pp. 40�41].

If f # H(G) and j # N0 we denote, as usual, by f ( j) the derivative of f
of order j. The linear operator D j: H(G) � H(G) defined by D jf =f ( j) is
continuous.

An entire function 8(z)=�j�0 aj z j on C is said to be of exponential type
whenever there exist positive constants A and B such that

|8(z)|�AeB |z| for all z # C.

This happens if and only if lim sup j � � ( j ! |a j | )
1�j is finite (cf. [23,

Chap. VII]). 8 is said to be of subexponential type if and only if given
=>0, there is a positive constant A=A(=) such that

|8(z)|�Ae= |z| for all z # C.

It happens that 8 is of subexponential type if and only if lim supj � �

( j ! |aj | )
1�j=0 (cf., e.g., [5, 2.2.9�11]). Trivially, each entire function of sub-

exponential type is also of exponential type. To every entire function 8 we
can associate a ``formal'' infinite order differential operator with constant
coefficients L=8(D), that is, L=��

j=0 ajD j with D0=I=the identity
operator. The following statement is easy to prove (see [3; 7, pp. 58�60; 11,
Sect. 5; 25, p. 35]) and furnishes a sufficient condition in order that 8(D)
can be an operator.

Theorem 1.1. Let 8(z)=��
j=0 ajz j an entire function of subexponential

type. Then ��
j=0 |a j | supz # L | f ( j) (z)|<+� for every L # K(G) and every
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f # H(G), and 8(D) is a well-defined continuous linear operator on H(G). If
G=C, the same assertion holds just by assuming that 8 is of exponential
type.

Recall now the ``infinite order antidifferential operators.'' They were
studied by the first author (see [4]). First, assume that G/C is a simply
connected domain and that a is a fixed point in G. If j # N and f # H(G),
denote by D& jf the unique antiderivative g of order j of f (i.e.,
(D& jf ) ( j)= f ) such that g(k) (a)=0 (k=0, 1, ..., j&1). In fact, we have

D& jf (z)=|
z

a
f (t)

(z&t) j&1

( j&1)!
dt (z # G),

where the integral is taken along any rectifiable curve #/G joining a to z.
Each D& j is a continuous linear operator on H(G). If $ # [0, +�), then we
denote by S($) the set of formal complex power series 9(z)=��

j=0 cjz j

such that lim supj � � ( |c j |�j !)1�j�$. For fixed c # G we use the notation
2(c, G)=supz # G inf[r>0: c is in the connected component of B(z, r) & G
containing z] (see [2, 6]). The following result can be found in [4,
Theorem 6].

Theorem 1.2. If 9(z)=��
j=0 cj z j # S(1�2(a, G)) then the series

9(D&1)=��
j=0 cj D& j defines a continuous linear operator on H(G).

W. Luh has studied in a series of papers the problem of existence of func-
tions with wild behaviour at every boundary point of certain open sets (see
[14�17]). The following strong result can be found in [17].

Theorem 1.3. Let G/C, G{C, be an open set with simply connected
components. Then there exists a function f # H(G) with the following
properties:

(1) For every t # �G, every compact subset K with connected comple-
ment and every g # A(K), there exist affine linear mappings {n (z)=anz+bn

with {n (K)/G (n # N) and an � 0, bn � t (n � �) such that f ({n (z)) � g(z)
(n � �) uniformly on K.

(2) In addition, each derivative f ( j) ( j # N) of f and each antiderivative
of f of arbitrary order has the boundary behaviour described in (1).

Functions satisfying (1) and (2) are called ``holomorphic monsters'' by
Luh. He shows in [17] that its set is dense in H(G). In addition, he proves
that every f in H(G) satisfying (1) also satisfies the next two properties:

(a) For every bounded open set U/C with simply connected com-
ponents, every g # H(U) and every t # �G, there exist affine linear mappings
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{n (z)=an z+bn with {n (U)/G (n # N) and an � 0, bn � t (n � �) such
that f ({n (z)) � g(z) in H(U).

(b) For every bounded Lebesgue-measurable set S/C, every
Lebesgue-measurable function g: S � C� and every t # �G, there exist affine
linear mappings {n (z)=an z+bn with {n (S)/G (n # N) and an � 0, bn � t
(n � �) such that f ({n (z)) � g(z) almost everywhere in S.

The properties exhibited in Theorem 1.3 and in (a) and (b) can be
expressed in terms of the maximality of certain generalized cluster sets
introduced in [17].

A little later, in 1987, K.-G. Grosse-Erdmann showed [12, Kapitel 3]
that if f # H(G) then it is a monster in the sense of Luh if and only if every
derivative and every antiderivative of f of arbitrary order, say F, satisfies
that for each Jordan domain 0/C, each t # �G and each g # H(0), there
exist two sequences [an]n # N and [bn]n # N in C such that an � 0, bn � t
(n � �), anz+bn # G (z # 0, n # N) and F(anz+bn) � g(z) (n � �)
uniformly on compact subsets in 0. In fact [12, Satz 3.0.2], it suffices to
take 0=D in the latter property. By using the fact that being a monster is
equivalent to the universality with respect to a certain family of composition-
differentiation-antidifferentiation operators, he also proves [12, Satz 3.1.8]
that the set of monsters on G is not only dense but residual in H(G).

Monsters with additional properties were constructed by Luh [18] and
I. Schneider [24]; see also [19].

On the other hand, the first author [1] introduced in 1992 the
``omnipresent holomorphic operators.'' Let us recall this notion. Let T be
a continuous mapping T: H(G) � H(G). T need not be linear. Denote
O(�G)=[V/C: V is open and V & �G{<]. Recall that T is said to be
omnipresent if each subset R(T, V, W)=[ f # H(G): there exists z # G & V
such that Tf (z) # W] is dense in H(G) for all V # O(�G) and all nonempty
open subsets W/C. In [1] it is shown that each differential and each
antidifferential operator is omnipresent. These properties will be
strengthened in Theorem 3.1 and, partially, in Theorem 4.2.

In this paper we introduce two original concepts which are connected
with each other: the T-monsters and the strongly omnipresent operators.
With these, we will be following the ways opened by Luh and Grosse-
Erdmann from the different point of view presented by the first author in [1].
In particular, operators of type 8(D) and 9(D&1) are going to be studied.

2. DEFINITIONS

From now on, we denote by G an arbitrary open subset of C,
G{C.
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Let T: H(G) � H(G) be a continuous operator, which need not be linear,
as it was supposed before. If g # H(D), =>0, r # (0, 1) and V # O(�G), then
U(T, g, =, r, V) will stand for the set

U(T, g, =, r, V)=[ f # H(G): there exists { # LT(V & G) such that

|(Tf )({(z))& g(z)|<= for all z # rD� ].

It is evident that each of these sets is open in H(G).
We will say that T is strongly omnipresent in G if and only if every set

U(T, g, =, r, V) (g # H(D), =>0, r # (0, 1), V # O(�G)) is dense in H(G). It
is evident that each strongly omnipresent operator on H(G) is also omni-
present. By Theorem 1(c) of [1]��applied on T=the identity operator and
g(z)=exp z��we have that f [ exp f is a (nonlinear) omnipresent operator
on H(G) which is not strongly omnipresent by Hurwitz's theorem and
Lemma 2.1 together with Theorem 2.2 below. Up to date, we do not know
whether a linear omnipresent non-strongly omnipresent operator can exist
or not.

Inspired by [12], we will say that a function f # H(G) is a T-monster in
G if and only if for each Jordan domain 0/C, each g # H(0) and each
t # �G, there exist two sequences [an]n # N and [bn]n # N in C such that

an � 0, bn � t (n � �);

an z+bn # G for all n # N for all z # 0

and

(Tf )(an z+bn) � g(z) (n � �)

uniformly on compact subsets in 0. Note that a function f # H(G) is a
monster in the sense of Luh if and only if f is a D j-monster for every j # Z
(it is easy to see that if a j-antiderivative of f satisfies condition (1) in
Theorem 1.3 then every j-antiderivative of f also satisfies (1)).

Denote by M(T, G) the set of T-monsters in G. Let us see now
(Theorem 2.2) that both concepts are closely connected. Before this, we
need the following auxiliary lemma. The proof of it is a simple adaptation
of the first part of the proof of [12, Satz 3.0.2], and so it is left to the
interested reader.

Lemma 2.1. Let [gi] i # N be a dense countable subset of H(D) and
[tk]k # N a dense countable subset of �G. Then, f # H(G) is a T-monster in G
if and only if for each i # N and each k # N there exist two sequences
[an]n # N , [bn]n # N in C such that an � 0, bn � tk (n � �), anz+bn # G for
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all n # N and all z # D and (Tf )(an z+bn) � gi (z) (n � �) locally uniformly
in D.

Theorem 2.2. Let T: H(G) � H(G) be a continuous mapping. Then T is
strongly omnipresent in G if and only if M(T, G) is residual in H(G).

Proof. Fix a dense countable subset [gi]i # N of H(D) and a dense
countable subset [tk]k # N of �G. From the fact that H(G) is a Baire space,
the statement of the theorem will become obvious as soon as we prove that

M(T, G)= ,
i, k, l # N

U \T, g i ,
1
l
, 1&

1
l
, B \tk ,

1
l++ .

For this, fix f # M(T, G). For each i # N and each k # N there are two
sequences [an]n # N and [bn]n # N in C such that an � 0, bn � tk (n � �);
an z+bn # G for all n # N and for all z # D and (Tf )(an z+bn) � gi (n � �)
uniformly on compacta in D. So, for every l # N there exists m # N such
that

|am |<
1
2l

, |bm&tk |<
1
2l

,

|(Tf )(amz+bm)& gi (z)|<
1
l

for all z # B� \0, 1&
1
l+ .

Then, {(z) :=amz+bm # LT(B(tk , 1�l ) & G) and

f # U \T, gi ,
1
l

, 1&
1
l

, B \tk ,
1
l ++ .

Now, let f # �i, k, l # N U(T, gi , 1�l, 1&(1�l ), B(tk , 1�l )). Then, for each i # I
and each k # N there is a sequence [{l (z)=al z+bl] l # N of affine linear
mappings such that

{l (D)/G & B \tk ,
1
l+ , (1)

|(Tf )({l (z))& gi (z)|<
1
l

for all z # B� \0, 1&
1
l+ . (2)

By (1), al z+bl # G for all l # N and all z # D, and |alz+bl&tk |<1�l for
every z # D. So, by taking z=0 and z=1�2, we get bl � tk and al � 0
(l � �). Finally, (2) gives that (Tf )(alz+bl) � gi (l � �) uniformly on
compact subsets in D. Apply Lemma 2.1 to obtain that f # M(T, G), as
required. The proof is finished.
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The following problem remains open: Is T strongly omnipresent just by
assuming that M(T, G) is nonempty?

3. INFINITE ORDER DIFFERENTIAL OPERATORS

Let 8(z)=�n�0 anzn be a nonidentically zero entire function of sub-
exponential type and G/C an open subset with G{C. Consider the con-
tinuous linear operator T=8(D). Since T can be defined on the space
H(C) of all entire functions and commutes with the translations, it is sur-
jective from H(C) onto H(C) (see [9; Sect. 5; 20]). In particular, for every
polynomial P, there exists an entire function f such that Tf =P. We are
now ready to state our next result, which improves strongly Theorem 2(a)
of [1].

Theorem 3. The operator T=8(D) is strongly omnipresent in G.

Proof. Fix g # H(D), =>0, r # (0, 1) and V # O(�G). We have to prove
that U(T, g, =, r, V) is dense in H(G).

Let K be a compact subset of G, $>0 and f # H(G). It is evident that we
can find a point a, a positive real number s and a set L satisfying:

(1) L is compact, K/L/G and each connected component of
C� "L contains some connected component of C�"G.

(2) B� (a, s)/V & (G"L).

Consider the affine linear mapping {(z)=sz+a. Then

{(D)=B(a, s)/V & G and {(rD� )=B� (a, rs). (1)

On the other hand, by taking r$ # (r, 1), a positive constant A can be found
in such a way that

|an |�A
( 1

2 (r$&r) s)n

n !
for all n�0, (2)

because 8 is of subexponential type.
Since g b {&1 # H(B(a, s)), we can obtain a polynomial P(z) with

|P(z)& g b {&1 (z)|<
=
2

for all z # B� (a, r$s) (3)
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and, as noted just above this theorem, there exists an entire function Q
such that

8(D) Q=P. (4)

Choose an open subset W of G satisfying L/W and W & B(a, s)=<. If
S=L _ B� (a, r$s) and U=W _ B(a, s), then S is compact, U is open,
S/U/G and each ``hole'' of S contains at least one ``hole'' of G. Define
. on U by

.(z)={ f (z)
Q(z)

if z # W
if z # B(a, s).

Trivially . # H(U). By Runge's Theorem, there exists a rational function h,
with poles outside G (hence h # H(G)), such that

|.(z)&h(z)|<min \$,
r$&r
4Ar$

=+ for all z # S.

Then

| f (z)&h(z)|<$ on K. (5)

Furthermore, if #=[t: |t&a|=r$s], Cauchy's formula gives

|h(n) (z)&Q(n) (z)|= } n !
2?i �

#

h(t)&Q(t)
(t&z)n+1 dt }

�
n !
2?

length(#)
((r$&r) s)n+1 sup

B� (a, r$s)

|h(t)&Q(t)|

�
n ! =

4A((r$&r) s)n

for all n�0 and all z # B� (a, rs). (6)

Therefore, by (2), (4), and (6),

|8(D) h(z)&P(z)|=|8(D) h(z)&8(D) Q(z)|

= } :
n�0

an (h(n) (z)&Q(n) (z))}
� :

n�0

|an | |h(n) (z)&Q(n) (z)|

�
=
4

:
n�0

\1
2+

n

=
=
2

for all z # B� (a, rs). (7)
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So, by (1), (3) and (7), there exists { # LT(G & V) such that

|8(D) h(z)& g b {&1 (z)|

�|8(D) h(z)&P(z)|+|P(z)& g b {&1 (z)|<
=
2

+
=
2

==

in B� (a, rs). Thus,

|(Th)({(z))& g(z)|<= for all z # rD� . (8)

Consequently, by (5) and (8),

h # U(T, g, =, r, V) & D( f, K, $),

i.e., U(T, g, =, r, V) is dense in H(G) and T is strongly omnipresent.

Remark 3.2. Although we have proved that T is strongly omnipresent,
we could give a similar proof to see, directly, that M(T, G) is residual in
H(G). In fact, the proof would only be changed in its first part.

4. INFINITE ORDER ANTIDIFFERENTIAL OPERATORS

In [1, Theorem 3], the first author showed that the operator S: H(G) �
H(G) defined by

Sf (z)=|
z

a
.(z, t) f (t) dt (z # G)

is omnipresent, where G/C is a simply connected domain, a # G is fixed,
.: G_G � C is a function which is not identically zero and holomorphic
with respect to both variables. The integral is taken along any rectifiable
curve in G joining a to z.

We can improve the latter result, at least when the kernel .(z, t) is an
entire function depending only on the difference z&t and does not grow
too much. Note that, in our main result (Theorem 4.2), T is something like
a Volterra operator of the second kind in the complex plane (S would be
of the first kind). In the proof of the theorem the following elementary
lemma will be needed.

Lemma 4.1. If G/C is a simply connected domain with G{C, b # C"G
and N # N, then the set P(b, N) of polynomials P such that b is a zero of P
with multiplicity not less than N is dense in H(G).
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The proof of the latter lemma is an easy application of Runge's theorem,
so it is left to the reader.

Theorem 4.2. Assume that G/C is a simply connected domain, G{C,
a # G and h is an entire function of exponential type, h not identically zero.
Let * # C and consider the linear operator T on H(G) defined by

Tf (z)=*f (z)+|
z

a
h(z&t) f (t) dt (z # G),

where the integral is taken along any rectifiable curve in G joining a to z.
Then T is strongly omnipresent.

Proof. In order to cause no confusion, we will keep the letter z to
denote the points of D. Let us set h(w&t)=.(w, t). Then .: G_G � C is
a function not identically zero and holomorphic with respect to both
variables. We may do this because the first part of the proof is not based
on the fact that the kernel only depends upon w&t.

In order to show that T is strongly omnipresent, fix f # H(G), =>0, a
compact subset K/G, V # O(�G), $>0, r # (0, 1) and g # H(D). It is clear
that we can find b, B, #, {, and L satisfying:

(1) L is compact, [a] _ K/L/G and the complement of L is con-
nected,

(2) B is a closed ball with B={(D� )/V & G"L, { being a non-
constant affine linear mapping,

(3) # is a rectifiable Jordan arc in G joining a to b and #=#1+#2 ,
where #k (k=1, 2) are rectifiable Jordan arcs too, #1=# & L, b is the end
point of #2 and # & B=[b].

Assume that we have proved the property

the linear operator S: Hb (C) � H(B0) given by

(S�)(w)=*�(w)+|
w

b
�(t) .(w, t) dt (w # B0)= (P)

has dense range,

where Hb (C) :=[� # H(C) : �(b)=0], which is a closed subspace of H(C).
Each integration curve may unambiguously be chosen as a rectifiable
Jordan arc joining b to w contained in B, for instance, the segment [b, w].
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Denote #(w)=#+[b, w]. Observe that length(#(w))�length(#)+2s for
all w # B, where s is the radius of B. Define the constant : by

:=sup [ |.(w, t)|: w # B, t # # _ B].

We can suppose that #2 has a parametrization u # [0, 1] [ ;(u), where ;
is injective. If f� : # � C is defined as

f� (w)={ f (w)
f (;(0))(1&u)

if w # #1

if w=;(u) # #2 ,

then f� is continuous on #.
Note that g b {&1 is defined and holomorphic on B0 because g is

holomorphic on D={&1 (B0). The same is true for the function w [
�# .(w, t) f� (t) dt. From property (P), there exists an entire function 9 such
that 9(b)=0 and

} (S9)(w)&\g({&1 (w))&|
#

.(w, t) f� (t) dt+ }<$
3

for all w # B1 , (1)

where B1 :={(rD� ). Let K0=L _ # _ B. Define the function f1 : K0 � C as

f (w) if w # L

f1 (w)={ f (;(0))(1&u) if w=;(u) # #2

9(w) if w # B.

Then K0 is a compact set whose complement is connected, f1 is continuous
on K0 and holomorphic in its interior K 0

0=L0 _ B0. By Mergelyan's
Theorem [10, pp. 97�109; 22, Chap. 20], there is a polynomial P such that

|P(z)& f1 (z)|<
min(=, $, 1)

1+3 |*|+3:(length(#)+2s)
for all z # K0 . (2)

We have, for every w # B1 ,

(TP)(w)& g({&1 (w))

=*P(w)+|
#(w)

.(w, t) P(t) dt& g({&1 (w))

=*(P(w)&9(w))+|
#(w)

.(w, t)(P(t)& f1 (t)) dt

+|
#

.(w, t) f� (t) dt+*9(w)+|
w

b
.(w, t) 9(t) dt& g({&1 (w))

=I+J+M,
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where

I=|
#(w)

.(w, t)(P(t)& f1 (t)) dt,

J=(S9)(w)&\g({&1 (w))&|
#

.(w, t) f� (t) dt+ ,

M=*(P(w)&9(w)).

Inequality (2) yields

|I |<
$
3

and

|M|<
$
3

.

From (1) we obtain |J |<$�3, so |(TP)(w)& g({&1 (w))|<$ because of the
triangle inequality. A change of variables shows that

|(TP)({(z))& g(z)|<$ for all z # rD� . (3)

But (2) also gives that

|P(w)& f (w)|<= on K (4)

because K/L/K0 . Then (3) and (4) tell us that

P # D( f, K, =) & U(T, g, $, r, V).

Hence U(T, g, $, r, V) is dense in H(G) and T is strongly omnipresent, as
required.

Thus, we should prove property (P). At this point the shape .(w, t)=
h(w&t) of . is crucial. A ``Laplace transform'' method will be used in this
part of the proof. From now on, the letter z may be any complex number,
not necessarily in D.

By applying Lemma 4.1 on G=B0 and taking into account that every
polynomial can be written as a finite linear combination of powers
(z&b)m, it suffices to show that there is m0 # N such that for each m�m0

a corresponding function 9 # H(C) can be found in such a way that
9(b)=0 and

*9(z)+|
z

b
9(t) h(z&t) dt=(z&b)m for all z # C.
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By the analytic continuation principle and a simple change of variables, we
should be done whenever we are able to prove the existence of m0 # N such
that for every m�m0 there is an entire solution 9(z) with 9(0)=0 of the
functional equation

*9(x)+(9 C h)(x)&xm=0 (x # (0, +�)), (5)

where 9 C h is the convolution product

(9 C h)(x)=|
x

0
9(t) h(x&t) dt.

Let us choose m0=2+[the multiplicity of h for the zero at the origin] (the
multiplicity may be, of course, zero) and fix m�m0 .

Since h is of exponential type, its Laplace transform

(Lh)(z)=|
+�

0
h(t) e&zt dt

is defined and holomorphic on a certain half plane [Re z>x0]. In fact, if
��

j=0 hj z j is the Taylor series of h, then \ :=lim supj � � ( j ! |h j | )
1�j<+�

and the series ��
j=0 ( j ! h j �z j+1) converges on [ |z|>\]. We have that

(Lh)(z)=��
j=0 ( j! hj �z j+1) on Re z>\. We have used that the Laplace

transform of each function xm is m !�zm+1. Consider the expression

F C (z)=
m ! zm+1

*+��
j=1 ( j&1)! hj&1z j .

Note that the series in the denominator defines a holomorphic function on
B(0, 1�\) whose zero at the origin has multiplicity not greater than m0&1,
so F C (0)=0 (with multiplicity at least 2) and there is + # (0, 1�\) such that
F C # H(B(0, +)). Then the function F(z) :=F C (1�z) is holomorphic in the
neighbourhood |z|>1�+ of � and has a zero at this point. Consequently,
it has an expansion

F(z)= :
�

j=0

cj

z j \ |z|>
1
++ ,

with c0=c1=0.
Thus, F is representable by means of an absolutely convergent Laplace

integral. In fact (see [8, p. 66]), the function

9(z)= :
�

j=1

cj+1

j !
z j (z # C)
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is entire and of exponential type, and satisfies 9(0)=0 and

F(z)=|
�

0
9(t) e&zt dt (Re z>R)

for certain R # (0, +�). Hence

\*+ :
�

j=0

j ! hj

z j+1+ |
�

0
9(t) e&zt dt=

m !
zm+1 (Re z>R),

that is,

*(L9)(z)+(Lh)(z) } (L9)(z)=(L_)(z) (Re z>R),

where _(x) :=xm. But, by Borel's theorem, L(9 C h)(z)=L(9)(z) }
(Lh)(z), so, by linearity,

L(*9+9 C h&_)(z)=0 (Re z>R).

Since *9+9 C h&_ is continuous on the interval (0, +�), we obtain
*9+9 C h&_=0 on that interval (see [8, pp. 53�54]). But this is (5).
This completes the proof.

We obtain immediately the following corollary, which of course can be
applied on a nonzero entire function 9.

Corollary 4.3. Let G/C be a simply connected domain with G{C.
Fix a point a # G and let 9(z) :=��

j=0 cjz j # H(B(0, R)) for some R>0, 9
being not identically zero. Consider the operator T=9(D&1) on H(G). Then
T is strongly omnipresent.

Proof. Recall that, in the definition of 9(D&1), a point a # G has been
fixed. We will see that the hypotheses of Theorem 3.1 or Theorem 4.2 are
satisfied. We have that

lim sup
j � �

( |cj |
1�j)<+� (6)

and, trivially,

lim sup
j � � \ |cj |

j ! +
1�j

=0. (7)
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By (7) and Theorem 1.2, T is a linear continuous operator on H(G) and for
any f # H(G)

Tf (z)=*f (z)+|
z

a
h(z&t) f (t) dt (for all z # G),

where *#c0 # C and h(w)=��
j=1 (cj �( j&1)!) w j&1. Observe that h is an

entire function of exponential type, because of (6).
Consequently, either h is identically zero (so *{0, because 9 is not

identically zero) and we get all hypotheses of Theorem 3.1 just by taking
8(z)#*, or h is not identically zero and we apply Theorem 4.2. In any case
T is strongly omnipresent and the proof is finished.

The following final result is a straightforward consequence of
Theorems 2.2, 3.1, and Corollary 4.3, and of the fact that, in a Baire space,
the intersection of a countable family of residual subsets is also residual. In
fact, the Baire category approach is now a classical tool in the study of
universality. Note that, for simply connected domains, the results of Luh
and Grosse-Erdmann follow from the special case 8j (z)=z | j | ( j # Z).

Theorem 4.4. Assume that G a simply connected domain of C, G{C.
Fix a point a # G and let D&1 be the corresponding antidifferential operator.
Suppose that [8j]j # Z is a family of nonidentically zero entire functions such
that 8j is of subexponential type for j # N0 . Denote T j=8 j (D) whenever
j # N0 and Tj=8 j(D&1) whenever & j # N. Then there is a residual subset in
H(G) consisting of functions f satisfying the following property: For each
j # Z, each t # �G, each compact subset K/C with connected complement and
each g # A(K), there exist affine linear transformations {n with {n (K)/G
(n # N) and an � 0, bn � t (n � �) such that (Tj f ) b {n � g (n � �)
uniformly on K.
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